Programming, Data Structure and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 02
Lecture - 05
Functions

We have seen how to alter the flow of a program by using if, for and while. We can have

conditional execution, we can have repeated execution.

(Refer Slide Time: 00:01)

A typical Python program

def function_1(..,..). * Interpreter executes
statements from top
def function_2(..,..): to bottom

* Function definitions

def function_k(..,..)s are “digested” for

future use
statement_1
statement_2 * Actual computation
starts from
statement_n statement_1

The last ingredient in our typical Python program is a function. What is a function? A
function is a group of statements which performs a given task. So of course, we could
write the function code as part of the main program, but by isolating it we can logically
separate out units of work and very often these functions are called repeatedly with
different arguments. So, they constitute a unit of computation which can be used

repeatedly from time to time.

137

(Refer Slide Time: 00:43)

Function definition

def f(a,b,c):
statement_1
statement_2

?‘(’tur‘n(ﬁj — >

* Function name, arguments/parameters
* Body is indented

« return() statement exits and returns a value

We define functions using the def statement as we have seen informally. So the definition
defines the name of function, in this case we have just called it f usually we would give it
more meaningful names. Then it says that this function takes three values as inputs, so
these are called parameters or arguments. So, the first one is called a, the second is called
b, and third is called c, and within the body of the program of the function a, b and ¢ will
refer to the values which are passed to this function for a given call. Within a function we

might have a statement like this called return.

The body of the function is indented like we had for if, while and for, and the return
statement if it i§ encountered, it says that at this point the execution of the function will
end and you will get back to where you called function from returning the value in the
name v. This could be any expression; we could just have return of a constant or return of

v plus one or whatever.

138

(Refer Slide Time: 01:50)

Passing values to functions

» Argument value is substituted for name

def power(x,n): power(3,5)
ans 1 ;
for 1 in range(@,n):
ans ans*x
return(ans)

i
n= 95y
ans 1

for 1 in range..

» Like an implicit assignment statement

When we call a function we have to pass values for the arguments, and this is actually
done exactly the same way as assigning that value to a name. Suppose, we have function
like this which takes x and raises it to the power n. Let us just look at the function just to
understand what the code is doing. We assume that the value of the answer is 1. And now
for as many 1 as there are in the range 0 to n minus 1 we multiply x into answer so we get
effectively x times, x times, x n times. Each time we go through this loop we multiply

one more x and finally we return the answer that we have got.

Now the way we would use this function in our code is to write an expression of the
form, say power 3, 5, so obviously, what this means is that 3 should be used for x and 5
should be used for n and we would then run this code with the values x equal to 3 and n

equal to 5.

Actually, you can imagine that when we run this code, it is as though we have this code
inserted into our program at this point preceded by this assignment. So, this assignment
basically says set the value of the name x to the value passed by this namely 3, setn to 5.
This assignment is what takes place effectively when you call a function. And since it is

an assignment, thi§ behaves very much like assignment in the regular case.

139

(Refer Slide Time: 03:32)

Passing values ...

« Same rules apply for mutable, immutable values

« Immutable value will not be affected at calling
point

« Mutable values will be affected

In particular the same rules apply for mutable and immutable values. Remember we said
that when we write something like x equal to y, if it is immutable that is the value in y
cannot be change in place then we copy the value and we get a fresh copy in X, so the
value in x and the value in y are disjoint. So this is if it is immutable. And if it is mutable,
we said we do not copy, we share the value; that is, both names will point to the same
copy of the value, so change in one will also make a change in the other; that happens

with mutable things like lists.

Immutable values will not be affected at the calling point in our case and mutable values
will be affected. It 1S as though we are making an assignment of the expression or the
name in the calling function, calling point to the name in the function. So, if the function
modifies that name, the value of that name; if it is immutable value, nothing will happen

here, if it is a mutable value something will happen.

140

(Refer Slide Time: 04:36)

Example
def update(l,i,v): ns 3511, 12
if 1 >= 0@ and 1 < len(l): Z 8
1[1] = v ~Yes —update(ns,Z2,z)
return(True) ~ec —-update(ns,4,z)
else: i
V = v+l *ns is [3,11,8]
, return(False)

* z remains 8

» Return value may be ignored

» |f there is no return(), function ends when last
statement is reached

So, here is a simple function just to illustrate this point. The aim of this function is to
update a list. So, I give you a list which is called in this function 1 and I give you a
position which is i1 and what I want to do is I want to replace whatever is there by a new
value v. So I get three arguments, 1 is a list, and then i is the index of the position, and

finally v is the value to be replaced.

So, what do we do? First cheek that the index is a valid index. We check that it lies
between 0 and | minus 1. So it is greater than equal to 0 and it is strictly lesser the length
of L. If so, what we do is just replace 1 of i by the value v which we have got and we
return true to indicate that the update succeeded. Now if 1 is not in this range then we
cannot do an update. So, what we will do is effectively return false. This is just say that
the update did not work and then the person, the part of code which is calling this can
understand that something went wrong and presumably what went wrong is the index

was not in the valid range.

But just to illustrate what happens with immutable values, in this case we are also
updating for no good reason the value v to be v plus 1. So, remember that v is being
passes a value to be put im here and we are assuming normally that v would be a

immutable value. Let us assume we call it now, so what we use do is we set up a list of

141

numbers 3, 11, 12 and then we want to replace this 12 say by 8. So, just for the sake of
argument we first set up a new name z called 8 and we say update the list n s at position
2, so remember the positions are 0, 1, 2. So, update the list in position 2 by the value of

Z.

And then we say update the same list at position 4 by the value of z. Now as we saw if
the values 4 right then this if will fail, so it will instead go here, this won't work, so it
will go here. And what will happen inside the code is that v will be incremented, now v
has been copied from z. The question is what happens to z? So, as you would expect
after executing these four statements, because of this update succeeding the value of z is
copied into the list that position 2 and so we get the value 8 instead of the value 12 that
we started with. On the other hand, if we execute this statement, then because this is an
immutable value the change in v inside the function does not affect z at all. Although v

has been incremented from 8 to 9, z remains 8.

This is just to illustrate that if we pass a parameter, through a parameter a value that is
mutable it can get updated in function and this is sometimes called a side effect. So the
function affects the value in the other program, so this is called a side effect. A side effect
can happen if the value is mutable, but if the value is immutable then the value does not

change no matter what we do inside the program.

Now, there are couple of other points to note about this function just to illustrate; one is
that we have here two return statements: return true or return false. The idea is that they
indicate to the calling function whether or not the update succeeded. So ideally you
should have said something like result is equal to update, and then check after the update

where the result is true or false.

Remember update will update the list or not update the list depending on whether the
index is valid and it will return true or false depending on whether they update
succeeded. So, by examining the value of whatever is returned we can check whether the
update we intended worked or not. This is something which we would expect but we
have not done it, so this is just to illustrate that there may be a return value but may be

the idea is a function will actually update some mutable value so we do not care what it

142

returns all the work is done inside the function.

Even though there is a return value you are not obliged to use it, you can just call a
function as a separate statement as we have done here it does not have to be part of an
assignment. The other thing is that because of this there may be functions which do not
return anything useful at all. A typical example would be a function which just displays a
message like there was an error or it displays some other indicative things for you to
understand what your code is doing. Now such a function just as to display something, it
does not have to compute or return anything. So, there may be no return function. So, by
default what happens is that a function executes like everything else from top to bottom

when it is involved.

And now if you encounter a return statement at that point the function stops executing
and you go back. On the other hand if you run out of statements to execute, if you reach
the last statement then there is nothing more then also the function will end. There is no
obligation for a function to actually have a return statement. So, a return statement is
useful if the function computes the value and gives you back some result which you will
use later on, but you may have functions which do not have return value, in which case
you can either return some empty thing or you can return nothing and everything will

work fine.

143

(Refer Slide Time: 10:07)

Scope of names

* Names within a function have local scope
def stupid(x):

ln 17
return(x)

n)= 7
V stup1d(28)
What 1s n now?

* n isstill 7

« Name n inside function is separate from n outside

Another point to note about functions in Python is that names within a function are
disjoint from names outside a function. So let us look at again atd kind of toy example
which does not have anything useful to do. We have a function which we ecall stupid
which takes essentially takes an argument and return it, so it does nothing. But in
between what it does is it just for no good reason sets name n to have the 17. Now
suppose we had in our program outside, a statement which assigned the value 7 to the
name 0 and then we call this function. Now obviously, if we say stupid of 8 then v will

also be the input, so v will become 28.

The question is that while executing the fact that v i§ 28; the function internally set n
equal to 17. The question is, we have asked n to be 7 then we call this function n became
17 inside the function is n 17 now or not. So the answer is that n is still 7 and that is
because the n inside and the n outside are two different copies of n. So, any name which
is used in side of function is to be thought of as disjomnt from the name outside. Names

outside are not visible inside, the names inside are not visible outside.

Now this is not something that you would normally do because is just confusing if you
use the same name inside and outside, but sometimes it is useful to have this separation

because very often we do use common things like i j k run through list you know like

144

ranges and things like that. And it will be a Aulisance if we have to use a, remember and
use i outside and j inside and make sure that fh€y do not interact. Since they do not
interact anyway we can freely use i j wherever we want and not worry about the fact that

we are already how i or j outside in the calling function.

(Refer Slide Time: 12:07)

»

Defining functions

» A function must be defined before it is invoked

* This is OK * This is not
def f(x):, \. | def £0x): 5y N
return(g(x+1)) ‘ return(/g(x+1)> 4]
Y / | \ /,{///
def g@y): | z=f@7) —
return(y+3) >S< T T
o \‘] def g(y):
2 = FCP) v return(y+3)

One of the things that we mentioned up front was that a function must be defined before
it i1s invoked. Now this is a slightly - point, so let us just look at it little more.
Remember that a Python program is read from top to bottom by the interpreter. So, when
the Python program is read it feads the definition of f, but does not execute it, and notice

that this definition of f has an invocation to g which is actually later.

But the point is when reading definition of f g is not used it is only remembered that this
statement which should be in a bracket, just to be consistent. So, this statement should be
computed if I call f so it is not calling f it is just defining f. So, I define f, then I define g,
finally when I come to this statement it says what is f of 77. So, f of 77 will come here
and we will say f of 77 is nothing but g of 78 right so that will come here. And fif will say
g of 78 is nothing but 81 so it will come here. S0'81. And then finally I will get 81.

So, it is only when I gxecute the statement f is executed at that time g ha§ already been

145

seen. Though we say a function must be defined before it is invoked it does not rule out
the fact that one function can call a function which is defined after it, provided that you
use this function only after fhat definition. So this sequence is fine. Suppose, we rewrote
this sequence in a different way, so supposing we had the definition of f then we had this

statement. We have basically gxchanged these two statements.

Now what happens is that when the Python interpreter comes down this line at this point
it will try and call £, so f will try and call g and g will say well I do not have a definition
for g et because I am not yet gone past this statement. So if I put this statement, execute
f before I define g and f requires g then this statement will create an error - this

statement will not.

It’s really useful if we define all functions upfront because any inter dependency between
functions will be resolved right way by the interpreter and we do not have to worry about
it. Whereas, if we do this inter mixing of functions and statements then we have to be
careful that functions do not refer to the later things which have not been scanned yet by
the ‘inferpreter. This is one more reason to put all your function definitions at the

beginning and only then have the statements that you want to execute.

(Refer Slide Time: 14:40)

Recursive functions

nzn)mD) . |
& NN

Ol = | ’—T/r\A]L:
« A function can call itself — recursion

def factorial(n): Lt [3)
ifn<=0 Que (e e
return(l) —— 2 , £ dond | k)
else: ‘ e i
val = n * factorial(n-1) YA),
return(val) { [

| & od ﬁt
|
1

146

A final point that we will return to later when we go through more interesting examples
as we proceed in programming, is that a function can very well call itself. The most
canonical function of this kind, these are called Recursive functions. Functions which
rely on themselves. Is the factorial function. If you remember n factorial is defined to be
n into n minus 1 into n minus 2 into n down to 1. So you take n and multiply it by all the

numbers smaller than itself up to 1 and by definition 0 factorial is defined to be 1.

What we observe in this definition is that, this part from n minus 1 to 1 is actually the
same as n minus 1 factorial. In other words n factorial can be defined in terms of a
smaller factorial it is n times n minus 1 factorial, so that is what this function is
exploiting. There is a base case factorial of 0 is 1 and since the factorial of negative
numbers is not defined and we want to be safe we can say that if n is equal to 0 or n is

less then equal to 0 we return 1. So this is what we normally call the base case.

In this case the factorial is completely defined without having to do any further work.
Now if n is not less than equal to 0 then n is greater than 0. If n is greater than 0 then we
take the current number and we multiply it by the smaller factorial that is exactly the
definition given above. So if I take say factorial of 3, this will result in 3 times factorial
of 2 so that will invoke this function again and this will give me 2 times factorial of 1

and so on.

Factorial of 1 will give me 1 times factorial of 0 and the point is that factorial 0 will now
terminate and it will give me 1, because it says that argument is less than or equal to 0
return 1. This 1 will return now come back and get multiplied here, so you get 1 times 1,
so 1 times 1 will come here and will come here, so then this will bring back 2 and then 3
times 2 this will become 6. This is how the function will execute we will talk about this

more later, but just to illustrate that functions can very well call themselves.

147

(Refer Slide Time: 17:03)

Summary

» Functions are a good way to organise code in logical
chunks

» Passing arguments to a function is like assigning
values to names

* Only mutable values can be updated
* Names in functions have local scope
* Functions must be defined before use

*» Recursion — a function can call itself

To summarize, functions are a good way to organize your code into logical chunks. So if
you have a unit of computation which is done repeatedly and very often done with
different possible starting values then you should push it aside into a function. If you
break up your code into smaller functions, it is much easier to understand, to read and to
maintain. When we pass arguments to a function it is exactly like assigning values to a

name.

So, the values that are passed can get updated in a function only if they are mutable, if
they are immutable any change within a function does not affect the argument outside.
Also if we use the same name inside a function as is found outside a function the name
inside the function does not in any way affect the name outside. So, functions have local
notion of what we call scope. There is a scope of a name where is a name understood, so

the name inside a function does not exist outside and vice versa.

Also functions must be defined before they are used and this is a good reason to push all
your function definitions to the beginning of your program, so that the Python interpreter
will digest them all before there are actually mvoked. So if there are mutual
dependencies we do not have a problem. Finally, we saw that we can write interesting

functions which call themselves and we will see many more examples of this in the

148

weeks to come.

149

